
Journal of Biomolecular NMR, 20: 297–310, 2001.
KLUWER/ESCOM
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

297

Calculation of NMR-relaxation parameters for flexible molecules from
molecular dynamics simulations

Christine Peter, Xavier Daura & Wilfred F. van Gunsteren∗
Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, ETH-Zentrum, CH-8092 Zürich,
Switzerland

Received 22 December 2000; Accepted 10 May 2001

Key words: internal dynamics, molecular dynamics simulation, NMR relaxation, NOESY, peptides, relaxation
matrix, ROESY, spectral density functions

Abstract

Comparatively small molecules such as peptides can show a high internal mobility with transitions between several
conformational minima and sometimes coupling between rotational and internal degrees of freedom. In those cases
the interpretation of NMR relaxation data is difficult and the use of standard methods for structure determination is
questionable. On the other hand, in the case of those system sizes, the timescale of both rotational and internal
motions is accessible by molecular dynamics (MD) simulations using explicit solvent. Thus a comparison of
distance averages (〈r−6〉−1/6 or 〈r−3〉1/3) over the MD trajectory with NOE (or ROE) derived distances is no
longer necessary, the (back)calculation of the complete spectra becomes possible. In the present study we use two
200 ns trajectories of a heptapeptide of β-amino acids in methanol at two different temperatures to obtain theoretical
ROESY spectra by calculating the exact spectral densities for the interproton vectors and the full relaxation matrix.
Those data are then compared with the experimental ones. This analysis permits to test some of the assumptions and
approximations that generally have to be made to interpret NMR spectra, and to make a more reliable prediction
of the conformational equilibrium that leads to the experimental spectrum.

Introduction

In the standard methods of structure determination
based on NMR relaxation data, interatomic distances
in a molecular model are compared to NMR-derived
distances. The model can be a single structure or a set
of structures, e.g., from a molecular dynamics (MD)
simulation. In this case the interatomic distances in the
set of structures are usually averaged according to the
method that describes best the relationship between
fluctuating distances and NMR relaxation parameters,
i.e. 〈r−6〉- or 〈r−3〉-averaging (Tropp, 1980).

This procedure is for two reasons problematic in
the case of small molecules that show a high internal
mobility with transitions between several conforma-
tional minima. First, the averaging method is not very
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sensitive to distance fluctuations. A small fraction of
structures with short distances between two atoms can
make a large contribution to the average, so that a
larger fraction of structures with longer distances can
be hidden or at least underestimated (Daura et al.,
1999a; Bürgi et al., 2001). Second, the interatomic
distances and their fluctuations are not the only quan-
tities which determine NMR relaxation rates and thus,
for example, ROESY crosspeak intensities, but there
is also an additional contribution from intramolecu-
lar motions to the observed signal by their timescales
and their orientational correlations. This contribution
is usually neglected or implicitly included using the
model-free approach by Lipari and Szabo (1982). This
is reasonable in the case of large and comparatively
stiff molecules such as proteins, where the internal dy-
namics is considerably faster than the overall tumbling
(Lipari and Szabo, 1982).
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Besides these difficulties, the comparison between
distances is not really necessary for small molecules,
because the whole timescale of both rotational and in-
ternal motions is accessible via molecular dynamics
simulations even when using explicit solvent mole-
cules. Thus, the (back)calculation of the relaxation
parameters and of the complete 2D-NMR spectra is
possible.

In the present study, two 200 ns MD simulations
of a heptapeptide of β-amino acids in methanol at
298 K and at 340 K (Daura et al., 1998, 1999b) are
analyzed. The correlation times and order parameters
for rotational and internal motions are investigated in
detail, as well as possible couplings between tumbling
and internal dynamics. Theoretical ROESY spectra for
both trajectories are computed. The influence of the
various aspects of internal dynamics (distance fluctu-
ations, timescales, orientational correlations) on the
crosspeak intensities is tested, and the analysis shows
that it is possible to obtain additional information by
considering not only distance averages but the com-
plete dynamical information. Finally, the theoretical
ROESY spectra and the buildup curves for selected
crosspeaks are compared with values obtained from
experimental spectra, leading to new observations
about the folding/unfolding equilibrium in the probe.

Methods

Theoretical background

Because the major goal in this study is to calculate
NOESY and ROESY spectra, all formulae presented
below are only given for the proton-proton dipolar
interaction. However, they can be easily adapted for
other relaxation-inducing interactions such as chemi-
cal shift anisotropy.

Time correlation functions and spectral densities
NMR relaxation, i.e., the return of a spin system
to equilibrium, is determined by the transition prob-
abilities between the energy levels involved. These
transition probabilities depend on the fluctuations of
the relaxation-inducing Hamiltonian and especially on
those frequency components of the fluctuations that
correspond to the transition frequency. The Hamil-
tonian that describes the spin system can be separated
into two terms, spin operator functions and spacial
functions, the latter containing all temporal fluctua-
tions. For the dipolar interaction of two spins I and

S, the Hamiltonian is given by

Ĥ (t) = µ0

4π

γ2h̄2

r3(t)

(
Î(t) · Ŝ(t)

− 3

r2(t)
(Î(t) · r(t))(Ŝ(t) · r(t))

)
(1)

= µ0

4π

γ2h̄2

r3(t)

2∑
m=−2

(−1)m Y2,−m(θ(t),

φ(t)) T̂2,m(I, S).

Here T̂2,m(I, S) are the second rank irreducible ten-
sor spin-operators and Y2,−m(θ,φ) are the second
rank spherical harmonic functions (Tropp, 1980). r(t)
is the internuclear vector and θ(t) and φ(t) are its
time-dependent polar angles in a laboratory frame of
reference. γ is the gyromagnetic ratio of the proton,
h̄ is Planck’s constant divided by 2π and µ0 is the
permeability of free space. As shown elsewhere (Ap-
pendix of Neuhaus and Williamson (1989) or Fischer
et al. (1998)) transition probabilities, and thus relax-
ation rates, are determined by the discrete Fourier-
coefficients of time-correlation functions Cmn(τ) of
the spherical harmonics involved in Equation 1

Cmn(τ)=4π

〈
Y2,m(θ(t),φ(t)) Y2,n(θ(t + τ),φ(t + τ))

r3(t) r3(t + τ)

〉
.

(2)

Spectral-density functions Jmn(ω) are the Fourier-
transforms of these time-correlation functions

Jmn(ω) =
∫ ∞

−∞
Cmn(τ) e−iωτ dτ. (3)

In the following only terms of Cmn(τ) with m = n

are needed. Furthermore is Cmm(τ) in an isotropic liq-
uid invariant under rotation of the laboratoy frame. It
can be shown that therefore Cmm is independent of
m (Brüschweiler and Case, 1994). Summing over m

and using the following addition theorem for spherical
harmonics

2∑
m=−2

Y2,m(θ(t),φ(t))Y
∗
2,m(θ(t + τ),φ(t + τ)) =

5

4π
P2(cos χt,t+τ), (4)

where P2(x) = 3
2x

2 − 1
2 is the second-order Legendre

polynomial and χt,t+τ is the angle between the inter-
spin vector at the two timepoints t and t + τ, gives
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the following formula for the time-correlation function
that determines relaxation

C(τ) = 1

5

2∑
m=−2

Cmm(τ) =
〈
P2(cos χt,t+τ)

r3(t) r3(t + τ)

〉
. (5)

In the following, only this time-correlation function
and its Fourier-transform J (ω) will be used.

An alternative, equivalent description of the inter-
action Hamiltonian (see Equation 1) is

Ĥ = −µ0

4π
γ2 h̄2 Î · D(t) · Ŝ, (6)

where

D(t) = 1

r5


 3x2 − r2 3xy 3xz

3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2


 (7)

is the dipole-dipole interaction tensor. This form is of-
ten computationally more convenient because it relies
on cartesian coordinates instead of spherical harmon-
ics. The correlation functions of the tensor elements
(only five are independent because D(t) is symmetric
and traceless) are equivalent to those of the spherical
harmonics. Again, in an isotropic liquid all auto- and
cross-correlation functions of the matrix elements are
either equal (except for some constant scaling factors)
or zero (H.J.C. Berendsen, personal communication),
and the averaging over all nine matrix-element corre-
lation functions is equal to the averaging in Equation
4. This second approach will be mainly used where
models for some internal motions have to be included
and a straightforward use of the second Legendre poly-
nomial as in Equation 5 is impossible, e.g., in the case
of the united-atom methyl-groups as described below.

Dipolar relaxation in a two-spin system
In a system of two protons i and j the longitudinal
relaxation of each proton is given by

d(Iz(t) − I0)i

dt
= −ρij (Iz(t) − I0)i

− σij (Iz(t) − I0)j . (8)

Here, (Iz(t) − I0)i is the deviation of the ‘magnetiza-
tion’ (the z component expectation value of the spin
operator of spin i) from its equilibrium value, ρij is
the direct dipolar relaxation rate constant of spin i

by spin j , and σij is the cross-relaxation rate. These
relaxation rates, which control the magnitude of an
NOE enhancement and the intensity of the signals
in a NOESY spectrum, are given by the following

formulae (Neuhaus and Williamson, 1989)

ρij = 1
10K

2 (3 J (2ω0) + 3
2J (ω0) + 1

2J (0)
)

(NOESY) (9)

σij = 1
10K

2 (3 J (2ω0) − 1
2 J (0)

)
, (10)

J (ω) being spectral-density functions of the inter-
spin vector, ω0 the Larmor frequency of the protons,
and K = (µ0/4π)h̄γ2. In the case of a rigid mole-
cule which tumbles isotropically according to Brown-
ian motion, the time-correlation function is a single
exponential function with a correlation time τc

C(τ) = 1

r6
ij

e−τ/τc (11)

and

J (ω) = 1

r6
ij

2 τc

1 + ω2τ2
c

, (12)

rij being the interspin distance.
Due to the minus sign in Equation 10, the cross-

relaxation rate changes sign for tumbling rates with

ω0τc =
√

5
4 ≈ 1, and therefore, the NOESY cross-

peak intensity can come close to zero depending on
the tumbling rate of the molecule. In this case, rotat-
ing frame experiments (ROESY) are performed where
this zero-transition does not occur. Then, the measured
intensities are determined by the following relaxation
rates (K as defined above) (Neuhaus and Williamson,
1989):

ρ = 1
10K

2 ( 3
2 J (2ω0) + 9

4 J (ω0) + 5
4 J (0)

)
(ROESY), (13)

σ = 1
10K

2 ( 3
2 J (ω0) + J (0)

)
(14)

Multispin systems and the relaxation matrix
In the case of a system of n spins, a set of coupled
differential equations similar to Equation 8 describes
the magnetization ot the individual spins:

d(Iz(t) − I0)i

dt
= −ρi (Iz(t) − I0)i −

−
n∑

j=1, �=i

σij (Iz(t) − I0)j .

(15)

Here ρi = ∑n
j=1, �=i ρij + L1,i is the total longitudi-

nal relaxation rate of spin i with the ‘leakage’ L1,i ,
i.e., relaxation due to other relaxation mechanisms,
such as chemical shift anisotropy, and intermolecu-
lar dipole-dipole relaxation by paramagnetic species



300

such as dissolved oxygen. This additional contribu-
tion is unfortunately hard to estimate and can only
approximately be included into the calculations.

The isolated-spin-pair approach, in which a cross-
peak intensity is given directly by the cross relaxation
rate of the corresponding spin-pair, is only as a first-
order approximation applicable. In most cases the
so-called ‘spin-diffusion’ is not negligible, i.e., the
coupled system of Equations 15 has to be solved
(Macura and Ernst, 1980; Keepers and James, 1984;
Boelens et al., 1989). The equations can be rewritten
in the matrix form

dM(t)

dt
+ R M(t) = 0 (16)

with

Mii(t) = (Iz(t) − I0)i (17)

Mij(t) = 0 for i �= j (18)

Rii = ρi (19)

Rij = σij. (20)

Here, M(tm) is the matrix with the intensities of the
NOESY- (or ROESY-)spectrum after a mixing time tm.
M(0), the spectrum at mixing time ‘zero’, contains the
intensities of the 1D-spectrum along the diagonal.

The matrix Equation 16 may be solved by diago-
nalization of the relaxation matrix R, leading to the
solution

M(tm) = X e−�tm X−1 M(0), (21)

where � = X−1RX contains the eigenvalues of R
as diagonal elements, and X is the corresponding
eigenvector matrix.

Methyl groups – a slight complication
In many MD simulations protons that are bound to an
aliphatic carbon atom are, together with that carbon,
incorporated into a united atom to save computational
effort. In the case of methyl groups this has the effect
that the exact positions of the three protons are not
known but only their positional average. Thus, models
for the methyl rotation have to be used to describe the
relaxation of proton pairs where one or both protons
are members of methyl groups.

One model for methyl-group rotation is a three-
site jump described in (Tropp, 1980). Here, the three
possible vectors connecting a nonmethyl proton to
the positions of the methyl protons are evaluated (re-
spectively the nine vectors in case of the interaction
between two methyl groups) and an averaging over

the spherical harmonics of the N (N = 3 or 9) in-
teraction vectors is performed before the correlation
function of the spherical harmonics is calculated ac-
cording to Equation 2. This is more conveniently done
in Cartesian space by calculating the five indepen-
dent elements of matrix D (see Equation 7) for the N

vectors

Cij(τ) =
〈(

N∑
k=1

Dij,k(t)

)(
N∑
k=1

Dij,k(t + τ)

)〉

1 ≤ i, j ≤ 3; N = 3 or 9. (22)

Here N = 3 or 9 is the number of different in-
teraction vectors and Dij,k is the element ij of D
corresponding to the kth interaction vector. To obtain
the optimal statistics over all orientations in space, av-
eraging equivalent to Equations 4 and 5 is performed
(the prefactor 1

6 = Tr(r3 · D)2 was chosen to obtain
the same scaling as in Equation 5)

C(τ) = 1

6

3∑
i,j=1

Cij. (23)

In this treatment the correlation time of the methyl-
group rotation is not included. In principle this is only
correct if this rotation is much faster than the other mo-
tions in the system (Edmondson, 1994), which might
be problematic for small molecules like peptides, but
should not qualitatively change the results.

One term that should still be added is the intra-
methyl-group relaxation. It gives an additional contri-
bution to the diagonal elements of R if i is a methyl
group. The spectral density functions for interactions
between two protons in the same methyl group are
(Edmondson, 1992; Woessner, 1962)

J (ω) = 1

r6
m

(
1

4

τc

1 + ω2τ2
c

+ 3

4

τa

1 + ω2τ2
a

)
, (24)

1

τa
= 1

τc
+ 1

τm
, (25)

where τm is the correlation time of the methyl-group
rotation and rm is the distance between the two pro-
tons. The values τm = 0.1 ns and rm = 0.17 nm were
chosen according to (Edmondson, 1992).

An additional complication is that a methyl group
is treated as a single site in the relaxation and the mag-
netization matrix, i.e., in the expression (Iz − I0)i the
magnetization of the three protons has been summed
if i is a methyl group. As a consequence R becomes
nonsymmetric because σij = 3 σji if i is a methyl
group and j is a nonmethyl proton, as can be seen from
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Equation 15. This problem can be solved by making
R symmetric before diagonalizing it, as described in
(Olejniczak, 1989).

Computation of the spectra

The computation of NOESY or ROESY spectra was
done in a three-step procedure in order to make it as
flexible as possible. Because the calculation of time-
correlation functions is computationally expensive, it
was done not for all proton pairs but only for a selected
(significant) subset:
1. Those proton pairs were selected which were ei-

ther close or for which the distance fluctuated
significantly:

〈r−6〉−
1
6

traj ≤ MAXDIST or

(〈r2〉traj − 〈r〉2
traj)

1
2 /〈r〉traj ≥ MINFLUC

The subscript traj indicates an average over the
whole MD trajectory. For the β-heptapeptide test-
system the criteria MAXDIST = 0.4 nm and
MINFLUC = 0.4 were chosen, so that all long-
distance NOEs measured experimentally were ex-
plicitly calculated.

2. The time-correlation and spectral-density func-
tions of the interproton vectors of the selected pairs
were computed according to Equation 5 or 22 and
23.

3. A relaxation matrix for a rigidly tumbling mole-
cule was computed using Equation 12. The val-
ues of the spectral densities of the selected pairs
were substituted by those that had been calculated
explicitly in step 2. After symmetrizing and di-
agonalizing the relaxation matrix the theoretical
spectrum was obtained. For the distances needed in
Equation 12, 〈r−6〉−1/6-distance averages from a
set of structures were used. This set included either
the whole trajectory (〈r−6〉−1/6

traj ) or structures that
were representative for a specific conformation
(〈r−6〉−1/6

conf ).

Results and discussion

A detailed description of the MD simulations of the
β-heptapeptide in methanol at 298 K and at 340 K is
given by Daura et al. (1998, 1999b). At 298 K the
system is found mainly (≈ 95% of the simulation) in
the folded conformation, which is a left-handed 314-
helix. In the 340 K simulation the system spends only
36% of the time in the folded state, folding/unfolding

occurring on a timescale of about 10 ns. Although at
340 K the system is more than 50% of the time in con-
formations that deviate considerably from the NOE-
derived model structure, the trajectory-averages of the
interproton distances still satisfy quite well the NOE
distance restraints (Daura et al., 1999a). Therefore,
comparison of average distances from a simulation
with experimentally derived distances is not a very
reliable criterium to investigate the folding/unfolding
equilibrium of a peptide.

A model of the folded conformation of the peptide
is displayed in Figure 1. Additionally some vectors
that will be frequently referred to later are indicated.
From the 200 ns trajectories at 298 K and 340 K
structures were saved every ps for the preliminary
analysis of the system dynamics. The calculation of
ROESY spectra was performed with peptide configu-
rations that were saved every 5 ps. Before, tests had
shown that a more frequent saving of conformations
(every 2 ps) would not alter the results.

Preliminary analysis of the system dynamics

Before calculating the NMR relaxation parameters
of the system, a general analysis of the overall and
internal system dynamics was performed for both sim-
ulations in order to get an answer to the following
questions:

1. In which timescales do internal dynamics and
overall tumbling take place?

2. Is the overall tumbling isotropic?
3. To which extent are internal dynamics and overall

tumbling correlated?
Normalized time-correlation functions of the motional
processes of selected interatomic vectors were calcu-
lated according to

C(τ) =
〈
r−6(t)

〉−1
〈
P2(cos χt,t+τ)

r3(t) r3(t + τ)

〉
(26)

both with and without fitting the structures to a (he-
lical) reference configuration. For the fitting a trans-
lation of the center of mass to the origin followed by
a rotational fit minimizing the root-mean-square po-
sitional deviation of backbone atoms was performed.
With this method the time correlation functions of
all motions in the laboratory frame, Call(τ), as well
as those of the internal motions in a molecule-fixed
frame, Cint(τ), could be obtained. By calculating the
time correlation functions of the three orthonormal
row vectors of the rotation matrix that resulted from
the fitting, the rotational time correlation function for
three directions, Crot(τ), could also be obtained.
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Figure 1. Chemical structure and model helix of the β-heptapeptide with some vectors indicated; dashed lines: some long distance NOEs that
are typical for the helical structure (see also Figure 6); solid lines: two vectors (residue 3: Cβ – Cδ; residue 7: N-C(carbonyl)) for which a

preliminary analysis of the occurring motional processes was performed. Note that in the simulation the N-terminus was protonated (NH+
3 ).

In the case of the three rotational time correlation
functions the correlation times were determined by fit-
ting a single exponential to Crot(τ). As in all other
cases the decay of the correlation functions was non-
exponential, a generalized order-parameter S2 and an
estimate of the correlation time τcorr were determined
via

S2 = lim
τ→∞C(τ) (27)

τcorr = 1

C(0) − S2

∫ tint

0
(C(τ) − S2) dτ, (28)

where the integration limit tint was chosen as the first
timepoint where the correlation function had reached
the value of S2.

If internal and overall rotational motion were un-
correlated and the overall tumbling corresponded to
Brownian motion the following Equation should hold

Call(τ) ≈ Crot(τ)Cint(τ) = e−τ/τcCint(τ), (29)

where τc is the correlation time of the overall rotation.

Table 1. Rotational correlation times

T (K) τc – three directions (ps) Average (ps)

298 153 143 158 ≈ 150

340 74 76 75 ≈ 75

Additionally to the complete internal dynamics,
the motions of the individual sidechains were inves-
tigated by translating in each case the corresponding
β-carbon atom to the origin and performing a rota-
tional fit based on the three atoms directly bonded to
the β-carbon atom.

The results for the rotational motion can be seen in
Table 1. The overall tumbling is found to be approx-
imately isotropic and has an average correlation time
of about 150 ps for the 298 K simulation and 75 ps for
the 340 K simulation. The rotational correlation time
of the molecule in the simulation at 298 K is prob-
ably underestimated. It is known experimentally that
the NOESY intensity at 500 MHz is approximately
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Table 2. Order parameters S2 (Equation 27) and correlation times τ (Equation 28) of vectors in the
third and in the last residue. The subscript all refers to inclusion of all motions, int to internal motions
(overall translation and rotation removed); the subscript COM refers to a translational/rotational fit
around the center of mass and therefore represents all internal motions, the subscript SC refers to a
translational/rotational fit around the Cβ-atom and therefore represents the sidechain motions

Vector T (K) τall (ps) τint,COM (ps) τint,SC (ps) S2
int,COM S2

int,SC

C3
β

– C3
δ

298 94 126 206 0.57 0.65

C3
γ – C3

δ
298 66 140 63 0.30 0.36

C3
γ – C3

ε 298 61 99 101 0.29 0.32

C3
δ

– C3
ε 298 47 63 41 0.21 0.24

C3
β

– C3
δ

340 44 1077 19 0.19 0.67

C3
γ – C3

δ
340 30 270 17 0.09 0.38

C3
γ – C3

ε 340 25 332 15 0.04 0.32

C3
δ

– C3
ε 340 17 212 12 0.03 0.20

N7 – C7
δ

298 84 646 287 0.27 0.68

N7 – C7(carbonyl) 298 105 1229 1882 0.29 0.68

N7 – C7
δ

340 31 170 438 0.05 0.59

N7 – C7(carbonyl) 340 39 190 442 0.04 0.54

zero. According to Equation 10 combined with 12 this
zero transition should occur for correlation times of
roughly 360 ps. The fact that the rotational diffusion
is too fast is not completely unexpected, because it
is known that the diffusion constant for the methanol
model used is also too large (Walser et al., 2000).

Correlation times of all motions, as well as cor-
relation times and order parameters of the complete
internal dynamics and of the motions in the sidechains,
are presented in Table 2 for vectors in the third and in
the last residue. If no addional types of motions appear
at the higher temperature, correlation times are ex-
pected to decrease with increasing temperature. This
is the case for the last residue, which is never strongly
fixed in the helical secondary structure. However, the
internal correlation times of vectors in the third residue
increase with increasing temperature, which indicates
that an additional, comparatively slow component is
added to the internal dynamics. This behaviour cannot
be observed for the internal motions of the sidechains
only, which is to be expected because these sidechain
rotations and vibrations should already be expressed
at the lower temperature. These observations are con-
firmed by the order parameters. S2

int,SC, the order
parameter of the sidechain motion, does hardly change
with temperature, while S2

int,COM, the order parameter
of the complete internal motion, decreases strongly
with increasing temperature for both residues. In the
case of the third residue, both order parameters are
very similar at 298 K, indicating that the sidechain

fluctuations are the major component of the internal
dynamics in this part of the molecule, whereas at
340 K S2

int,COM is much smaller than S2
int,SC. The lat-

ter observation holds for both temperatures in case of
the terminal residue which shows large conformational
changes.

These results are illustrated in Figures 2 and 3
where the various time correlation functions of two
representative vectors in these residues are shown. For
the third residue (Figure 2) the product of the inter-
nal time-correlation function with the exponential time
correlation function of the tumbling (see Equation 29;
dashed lines) matches the time correlation function of
all motions (solid lines) for both temperatures. Thus,
the overall tumbling and the internal dynamics are not
strongly coupled for this residue. Equation 29 is less
accurately satisfied in the case of the terminal residue
(Figure 3). In all cases Call(τ) is not monoexponential,
which implies that computing relaxation parameters
with a simple Lorentz function as in Equation 12 is
not sufficient.

The internal time correlation functions of the
residues that take part in helix formation show at
340 K some periodicity with the approximate fre-
quency of the folding and unfolding transitions. This
effect is absent at 298 K and in the case of the terminal
(not helix forming) residue.
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Figure 2. Time correlation functions (TCF) for the vector between the β- and the δ-carbon in the third residue – A and C (A: 298 K; C: 340 K):
external coordinate system; TCF of all motions (solid lines), monoexponential TCF using τall = 94 ps (A) and 44 ps (C) (dotted/dashed),
monoexponential TCF using τrot = 150 ps (A) and 75 ps (C) (dotted), internal TCF multiplied with rotational TCF (dashed); B and D (B:
298 K; D: 340 K): internal coordinate system; TCF for all internal motions (solid lines), TCF only for sidechain dynamics (dashed).

Theoretical ROESY-spectra and buildup curves

As already mentioned, there are several aspects of in-
ternal flexibility that influence NOESY (or in this case
ROESY) cross-relaxation rates. From looking at the
functional form of the spectral densities of a tumbling
rigid molecule (Equation 12) three major effects of
neglecting internal dynamics can be distinguished:

− Internal dynamics lead to fluctuations in the in-
terproton distances. This effect will from now on
be referred to as ‘distance fluctuations’, it is in
the conventional methods to analyse NOEs ap-
proximately taken into accont by using 〈r−6〉- or
〈r−3〉-averaging (Tropp, 1980).
− The overall correlation times of the motions of
the interproton vectors contain contributions from
both tumbling motions and internal dynamics and
are thus different for each proton pair. This ef-
fect will from now on be referred to as ‘individual
correlation times’.
− Due to the superposition of overall rotations
and possibly various types of internal motions,

the overall time correlation function is not a sin-
gle exponential and thus the spectral density is
not a simple Lorentz function as in Equation 12.
This effect will from now on be referred to as
‘non-monoexponentiality of the time correlation
function’ or as ‘orientational effect’. ‘Orienta-
tional’ because it implicitly results from the sec-
ond Legendre polynomial in Equation 5: this term
in the time-correlation function is altered by in-
ternal dynamics and makes the time correlation
function not monoexponential.

In order to investigate the impact of these influencing
factors, various types of theoretical spectra were cal-
culated for both simulations: spectra that correctly use
the spectral density functions from the simulations,
and therefore correctly incorporate all aspects of in-
ternal dynamics and tumbling (Flex298 and Flex340),
and spectra that assume a rigidly tumbling molecule
with the tumbling time determined from the simula-
tion and with interproton distances that were com-
puted as 〈r−6〉-averages over a set of structures. For
the latter, either the structures of the whole simu-
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Figure 3. Time correlation functions (TCF) for the vector between the nitrogen and the carbonyl carbon in the last residue – A and C (A:
298 K; C: 340 K): external coordinate system; TCF of all motions (solid lines), monoexponential TCF using τall = 105 ps (A) and 39 ps (C)
(dotted/dashed), monoexponential TCF using τrot = 150 ps (A) and 75 ps (C) (dotted), internal TCF multiplied with rotational TCF (dashed); B
and D (B: 298 K; D: 340 K): internal coordinate system; TCF for all internal motions (solid lines), TCF only for sidechain dynamics (dashed).

lation (Rigtraj
298 and Rigtraj

340) or a subset of structures
that are representative for the helical conformation
(Righelix

298 and Righelix
340 ) were used. For this set, the con-

formations from the 340 K simulation were chosen
which have a backbone-atom root-mean-square de-
viation from the NMR model structure smaller than
0.1 nm (Daura et al., 1999b). By looking at the rela-
tive or the absolute differences between, for example,
Rigtraj

340 and Flextraj
340 the effects that do not stem from

‘distance fluctuations’ can be extracted. This allows
to test whether there is indeed a substantial neglect of
information when comparing only distance averages
from simulations and experimentally derived average
distances.

The results are illustrated in Figure 4, where differ-
ence spectra are plotted as matrices with the 50 proton
sites ordered along the axes of the figures according
to their sequence in the peptide. This sequence is for
each residue i: NiH, Ci

βH, sidechain protons from Ci
γH

to maximal Ci
εH, Ci

αHax and Ci
αHeq , the subscripts

ax and eq indicate the axial and equatorial positions

of the two Cα-protons in the model helix. Panel A
shows the relative difference between intensities of
all (cross)peaks in the ROESY spectra at 298 K for
a rigid (trajectory average) and a flexible molecule,
calculated using (Rigtraj

298 − Flextraj
298)/Rigtraj

298. Panel B
shows the same for the 340 K simulation. To make
sure that large relative differences between the spectra
are really significant, the absolute difference is also
given for the simulation at 340 K (Rigtraj

340 − Flextraj
340)

in panel C. Here the intensities were scaled such that
they could be compared with experimentally measured
peak volumes. The experimentally determined intensi-
ties range from approximately 5 to 200 arbitrary units,
which implies that matrix elements with a colour that
is different from dark blue in panel C denote a de-
tectable difference in the spectra. As the main focus
of this investigation is to study the effect of large con-
formational changes of the peptide (mainly visible in
the behaviour of the backbone), backbone protons are
marked with coloured bars along the axes. Addition-
ally some backbone proton pairs are highlighted with
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Figure 4. Difference plots for theoretical ROESY spectra of the
β-heptapeptide (mixing time: 100 ms) between tumbling rigid
(〈r−6〉-average over full trajectory) and flexible molecules; the
numbering of the protons follows the sequence in the peptide which
is for each residue i: NiH, Ci

β
H, sidechain protons from Ci

γH to

maximal Ci
εH, Ci

αHax , Ci
αHeq ; coloured bars at the axes indicate

backbone protons (Ci
αHax , Ci

αHeq , Ni+1H and Ci+1
β

H; red: i = 1,

blue: i = 2, green: i = 3, cyan: i = 5, yellow: i = 6, magenta: N5H
and C5

β
H); white rings mark selected pairs of backbone protons – A:

298 K, relative difference; B: 340 K, relative difference; C: 340 K,
absolute difference (arbitrary units which correspond to measured
peak volumes – detectable intensities range from 5 to 200).

white circles. It can be observed that there is a change
in the relative differences upon raising the tempera-
ture from 298 K to 340 K, especially for those proton
pairs which are in close proximity along the peptide
backbone, e.g., Ci

αHax – Ni+1H, NiH – Ci
αHax , Ci

βH

– Ni+1H. These are proton pairs where the ‘individual
correlation times’ and the ‘orientational effects’ have
a strong influence (in addition to the change in the dis-
tance average) on the intensity of crosspeaks in case of
conformational fluctuations. It can also be seen, that
these influences are not equally strong for all proton
pairs. This can even lead to an inversion of the relative
intensity of two peaks depending on whether the inter-
nal dynamics is treated exactly or only approximately
via distance averages (see below). Consequently in the
case of the simulation at 340 K where strong inter-
nal dynamics occur, the explicit computation of the
spectral density functions of individual proton pairs
appears to be a requirement to reliably (back)calculate
ROESY spectra from MD simulations.

To monitor these effects in more detail theoretical
ROESY-intensity buildup curves (i.e., crosspeak inten-
sity as function of mixing time) of some selected pro-
ton pairs were calculated. The results for both simu-
lation temperatures and for all three above-mentioned
cases (Righelix, Rigtraj and Flextraj) are shown in Fig-
ure 5. Comparing Righelix

298 with Rigtraj
298 and Righelix

340

with Rigtraj
340 gives an impression how strongly the

‘fluctuating distances’ affect the intensities. Compar-
ing these with Flextraj

298 and Flextraj
340 permits assessing

all other additional effects included only by explicit
calculation of time correlation functions and spectral
densities, i.e., ‘individual correlation times’ and ‘non-
monoexponentiality of the time correlation function’.
As expected, the differences are rather small for the
simulation at 298 K, because the peptide is most of
the time in the folded state. The situation is different
for the simulation at 340 K. The ‘distance fluctua-
tions’ can lead to a decrease or increase in the average
distance resulting in an increase or decrease in in-
tensity. This depends on whether the ‘collapse’ of a
rigid structure adds shorter distances to the average
and thus makes it smaller, or whether the breaking of a
rigid structure tears apart proton pairs which are kept
close, e.g., by hydrogen bonding, and thus leads to
an increase in the average distance. Overall correla-
tion times which include internal motions are usually
smaller than the rotational correlation times only, so
that the ‘individual correlation times’ lead to a de-
crease of intensity compared to a ‘rigid spectrum’.
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Figure 5. Theoretical buildup curves – left panels (A and C) 298 K (τrot = 150 ps), right panels (B and D) 340 K (τrot = 75 ps); solid lines:

fully flexible molecule (Flextraj
298 and Flextraj

340); dashed lines: rigid molecule, average over all conformations (Rigtraj
298 and Rigtraj

340); dotted lines:

rigid molecule, average over helical structures (Righelix
298 and Righelix

340 ); the proton pairs are indicated in the figure.

This decrease is of course individually strong, and
depends on the internal correlation time. The conse-
quences for the relative intensities of a set of peaks in
a spectrum can, for example, be seen in Figure 5 by
comparing the buildup curves of C2

αHax – C5
βH, C5

βH

– N6H and N4H – C7
βH.

By treating all internal motions explicitly, even the
‘negative’ information that a signal is not observable

although it should be according to the distances in a
rigid structure, or that a peak is observable although
the interproton distance in a rigid structure would be
too big, can be used to analyse NOESY or ROESY
spectra. Yet, it should be always kept in mind that
‘leakage’ contributions to the longitudinal relaxation
rate in Equation 15 cannot be calculated quantitatively
and may lead to artifacts.
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Figure 6. Experimental and theoretical buildup curves – left (A and D): simulation at 298 K (Flextraj
298), middle (B and E): experimental buildup

curves at 300 K, right (C and F): simulation at 340 K (Flextraj
340) – upper panels (A–C): long distance backbone NOEs; lower panels (D–F): short

distance backbone NOEs – the proton pairs are indicated in the figure.

Comparison with experimental data

The theoretically calculated ROESY spectra from the
two simulations can now be used to make a more
reliable prediction of the ‘real’ folding/unfolding equi-
librium of the β-heptapeptide. Experimental ROESY
spectra at room temperature with mixing times of 50,
100, 150 and 250 ms are available (Seebach et al.,
1996). From these, a set of non-overlapping peaks
was selected for which the intensities can be reliably
determined by integration. To compare the buildup

curves of those experimental signals with the theoreti-
cally calculated ones one scaling factor per simulation
temperature was determined by least-square fitting.
Some of these buildup curves are shown exemplar-
ily in Figure 6. The agreement between simulation
and experiment for the long-distance (‘helical’) NOEs
(upper panel) is reasonable but not excellent for both
simulations, albeit still better for the simulation at 298
K. However for NOEs that belong to backbone pro-
ton pairs which are close in sequence (lower panel)
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the agreement with experiment is clearly better for
the 298 K simulation compared to that for the 340 K
simulation. This can be explained by the fact that
the long-distance NOEs are probably mainly sensi-
tive to the distance average and that the effects of
correlation times and the shape of the spectral den-
sity functions (‘non-monoexponentiality of the time
correlation function’) have a minor impact, whereas
they play a more important role for pairs which are
separated only by a few bonds.

Comparison of the curvatures of the experimental
buildup curves with the ones from the simulation at
298 K again indicates that the simulated correlation
times are a bit too short, because an increase in the
correlation times of all proton pairs shifts the maxima
of the buildup curves towards shorter mixing times.

Besides these small discrepancies the results lead
to the conclusion, that the simulation at 298 K gives
a more realistic description of the true conforma-
tional equilibrium of the peptide at room temperature
compared to the simulation at 340 K.

Conclusions

Two 200 ns MD simulations of a β-heptapeptide
testsystem at 298 K and 340 K have been used to
investigate the influence of internal flexibility of a
molecule on NMR relaxation parameters. Various as-
pects of the system dynamics have been considered
(overall tumbling, internal motions, sidechain dynam-
ics). The overall rotation of the molecules is found
to be essentially isotropic and the tumbling and inter-
nal motions appear not to be coupled. The rotational
correlation times are approximately 150 ps and 75 ps
at 298 K and 340 K, respectively, which is too short
compared to values indicated by NMR experiments
at room temperature. In the simulation at 298 K the
peptide stays most of the time in a folded (helical)
conformation, and the internal dynamics is mainly
confined to motions in sidechains and in the terminal
residues. In the simulation at 340 K several unfold-
ing events and comparatively slow internal motional
processes occur. There are several reasons why this
peptide is a good testsystem to assess the advantages
of (back)calculating ROESY spectra compared to the
conventional method of analysing ROESY spectra by
only comparing simulated distance averages with ex-
perimentally derived average distances: it shows inter-
nal fluctuations which have correlation times that are
of the same order of magnitude or lower than the cor-

relation time of the overall tumbling, the correlation
times of interatomic vectors are quite diverse, and the
corresponding time correlation functions are not sim-
ply monoexponential. It could be shown, that internal
dynamics have a strong influence on the cross-peak in-
tensities of ROESY spectra. The explicit computation
of spectral densities via the time correlation functions
of interproton vectors leads to significant differences
in the spectra compared to only calculating distance
averages and neglecting possible other aspects of in-
ternal dynamics, such as ‘individual correlation times’
and ‘orientational effects’. This method makes the use
of ‘negative’ information, i.e., the absence of specific
crosspeaks in the spectra, possible. Only the poten-
tial influence of ‘leakage’ contributions from other
relaxation mechanisms cannot be computed properly.

For the β-heptapeptide the comparison of theoreti-
cal and experimental ROESY buildup curves suggests
that the folding/unfolding equilibrium in the exper-
iment lies more on the side of the folded (helical)
state. This conclusion could hardly be made from
comparing distance averages with ROE-derived dis-
tances, as the experimentally derived distances were
still in good agreement with distance averages from a
simulation with a 50/50 equilibrium distribution. This
proves that it is possible to gain more information
about the relationship between experiment and simula-
tion by (back)calculating NMR spectra explicitly than
by comparing only distance averages.

For future applications this method of perform-
ing unrestrained, explicit solvent MD simulations and
(back)calculation of NMR relaxation parameters and
spectra can be used in cases of even more flexible
molecules, where no single configuration that satisfies
the NOE derived distances can be found at all. For
such systems, where the interpretation of NMR data
alone seems to be a desperate venture because of the
extreme internal mobility, this method could open new
possibilities to analyse structure and dynamics.
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